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Abstract

Using dynamic methods, we measured the elastic constants of a composite comprising alumina platelets (0.2 volume fraction) in a

3:2 mullite matrix. Instead of the expected elastic stiffening, we found an elastic softening. For example, the Young modulus was
222 GPa, below mullite’s value of 228 GPa, and far below the value predicted by a solid-mechanics model assuming good alumina–
mullite interfaces: 256 GPa. As possible softening sources, we considered voids, cracks, poor particle–matrix-interface bonding, and

an enveloping third phase, either around the platelets or around the mullite particles. We concluded that the mullite particles must
be enveloped by silica, an elastically soft phase. Solid-mechanics modeling considering a three-phase composite supports our con-
jecture. Our conjecture received further confirmation from careful SEM and STEM observations. # 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Mullite’s processing, properties, and applications are
well reviewed.1 Mullite, of nominal composition
3Al2O3

.2SiO2, is a highly attractive candidate for oxide
composites. As a matrix, it is a widespread ‘workhorse’
refractory material, having good creep resistance and che-
mical stability up to 1600�C. The current, widely accepted
phase diagram indicates that the equilibrium phase grown
by solid-state reaction has a narrow solid-solution range
around the 3Al2O3

.2SiO2 (abbreviated 3:2) composition.2

Applications of mullite composites range from electro-
nic-packaging materials to jet-engine linings. Principal
hopes for particle-reinforced mullite are higher flexural
strength and higher toughness in more diverse shapes.
Studying a material’s elastic constants offers several

advantages: (1) elastic constants allow accurate measure-
ment (1 part in 1000 is easy); (2) elastic constants provide a
valuable probe of microstructure: particle volume fraction
and shape, heterogeneities, internal stresses, texture, oth-
ers; (3) elastic constants often correlate either theoretically
or empirically with other physical properties and even
with mechanical-deformation properties.
Internal friction Q�1 is the imaginary part of the total

elastic constant

C~ ¼ Cþ iC� ¼ C 1þ iQ�1
� �

: ð1Þ

or

Q�1 ¼ C�=C; ð2Þ

the ratio of the real to imaginary parts. Internal friction
is extremely sensitive to material defects, any defect
varying from phonons to cracks. Any measurement of C
yields also the accompanying Q�1.

2. Materials

The mullite powder for the matrix was KM mullite-
101 (Kyoritsu, Nagoya, Japan). (We use trade names to
characterize the studied material and permit reproduc-
tion of our results. They are not endorsements of parti-
cular products. Other products might function as well
or better.) X-ray diffraction and fluorescence confirmed
the 3:2 composition. The particle-size distribution
determined by sedigraphy was 0 to 2 mm with a mean
size of 0.84 mm.
Alumina platelets were obtained from Du Pont (E.I.

du Pont de Nemours & Co., Central Research and
Development Experimental Station, Wilmington, Dela-
ware). Each platelet was a monocrystal. Because of the
alumina crystals’ symmetry (trigonal, R3c), they pos-
sessed roughly hexagonal shapes. The size and density
of the alumina platelets and the mullite are given in
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Table 1. Scanning electron micrographs indicated that
the platelets were 2 to 5 mm thick (Fig. 1).
The composites were processed by mixing alumina

platelets (0.2 volume fraction) and mullite powder (0.8
volume fraction). The mixture was shear-homogenized
for 2 min in hexane containing 0.1 volume fraction of
the solids. A high-shear-rate homogenizer was used. The
batch was dried overnight at about 100�C and sieve-
granulated with a 250-mm screen. Granulated batches
were hot-pressed for 1 h at 34.5 MPa (5000 psi) at tem-
peratures between 1500 and 1600�C to produce cylin-
ders about 1 cm thick and several cm in diameter. The
cylinders were black because graphite die and plungers
and the vacuum atmosphere made them slightly oxygen
deficient. A representative microstructure is shown in
Fig. 2. Three specimens were examined; their processing
parameters are summarized in Table 2.

3. Measurements

To measure the elastic constants C and the internal
friction Q�1, we used acoustic-resonance spectro-
scopy.3�5 The method offers numerous advantages.6

These include (1) a single small specimen, (2) no bond-
ing agent (contactless), except at two points, (3) a single

frequency sweep to get the entire elastic-stiffness tensor
C (even for the lowest symmetry), (4) low inaccuracy
(typically 1 in 1000 or better), (5) simultaneous Q�1

measurements, thus the full internal-friction tensor Q�1.
Fig. 3 shows a vibration-frequency spectrum. Despite its
complexity, the material yields sharp mechanical-reso-
nance peaks.

4. Results and discussion

Table 3 gives the measured C for an assumed general
orthorhombic symmetry. First, we note that the mate-
rial is slightly anisotropic: 2C66/(C44+C55)=1.04,
instead of unity, as required for isotropy. We assume
this anisotropy arises from the nonrandom distribution
of platelet orientations. Because alumina is stiffer than
mullite, alumina platelets oriented preferentially per-
pendicular to the pressing direction x3 would cause C66

> C44=C55, C33 < C11=C22, E33 < E11=E22, �31 >
�13, where E denotes Young modulus and � the Poisson
ratio. The measurements meet all these conditions.
At the bottom of Table 3, we give the Voigt–Reuss–Hill

averaged-over-direction quasi-isotropic elastic constants.
The internal-friction Q�1 results show some interesting

features. First, we note the exceptionally low values for

Table 1

Physical properties of alumina platelets and mullite powder

Material Densitya

(g/cm3)

Surface areab

(m2/g)

Diameter

(mm)

Alumina platelets

(batch A)

3.94 1.3 1–8

(mean: 5)

Alumina platelets

(batch B)

3.98 0.13 20–80

(mean: 40)

Kyoritsu mullite 3.12 29.4 0.84

(mean)

a Helium pycnometry.
b BET.

Fig. 1. SEM image of alumina platelets showing rounded triangular–

hexagonal symmetry, which reflects the rhombohedral crystal struc-

ture. Batch A.

Fig. 2. SEM image of alumina platelets (batch A) in mullite after hot-

pressing and thermal etching at 1400�C for 1 h. Standard secondary-

electron image. This image fails to reveal an observed tendency of the

platelets to align perpendicular to the hot-press stress axis.

Table 2

Composite processing parameters

Composite

no.

Platelet

diameter (mm)

Hot-press

conditions

Temperature

(�C)

Pressure

(MPa)

3 40 1550 34.5

4 40 1500 34.5

8 5 1500 34.5
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Q�1 corresponding to C33 and E33. Both of these defor-
mation modes contain a large extensional–compressional
component in the x3 direction. One explanation for the

low values is that the platelet–matrix interfacial bonding is
much stronger along x3 than along x1 and x2, a reasonable
hypothesis considering the platelet geometry. (Bonding
at platelet surfaces exceeds that at edges.) Second, we
note the relative values of QG

�1 and QCL
�1: (Sub-

scripts G and CL indicate shear and longitudinal modes,
respectively.) If most of Q�1 arises from phonons, the-
ory7 predicts QG

�1=QCL
�1 ¼ 3; versus the observed

ratio 0.43/0.30 =1.4. Some other defect must be
increasing QCL

�1: Again, weaker bonding at platelet
edges offers a possible explanation.
The most surprising result in Table 3 is the generally

low measured C values. Beside the measurements,
Table 3 contains values predicted by a wave-scattering
model,8 a model tested successfully9 for various particle-
reinforced composites and yielding measurement–the-
ory agreement within a few percent or better. Also, we
verified that this model gives the same results as the
extended Mori–Tanaka model described elsewhere10

and below. For the calculations, we took the 3:2 mullite
values reported by Ledbetter and co-workers11 and the
alumina elastic constants reported by Tefft12 (Table 4).
Fig. 4 illustrates the situation for the Young modulus.

Table 4

Elastic properties of three constituents

Mullite Silica Alumina

CL (GPa) 293.2 87.81 467.7

G (GPa) 89.47 35.54 161.7

B (GPa) 173.9 40.44 252.1

E (GPa) 229.1 82.45 399.6

� 0.2804 0.1600 0.2358

Fig. 3. Vibration-frequency spectrum. Resonance-peak frequencies give elastic stiffnesses. Peak widths give internal frictions.

Table 3

Elastic properties of a mullite–matrix composite containing 0.2

volume fraction of alumina plateletsa

Measurement Theory

Cij (GPa) Q�1
ij 10�3
� �

Cij (GPa)

C11 273.52 0.28 325

C22 275.39 0.87 325

C33 256.33 0.07 325

C44 87.428 0.23 98.2

C55 87.186 0.32 98.2

C66 90.606 0.25 101

C12 92.622 123

C13 91.536 116

C23 89.155 116

B 150.12 0.20 187

E11 225.71 0.46 260

E22 229.04 1.19 260

E33 211.84 0.11 265

�12 0.24873 0.288

�21 0.25240 0.288

�13 0.27059 0.254

�23 0.25768 0.254

�31 0.25396 0.259

�32 0.23832 0.259

� (g/cm3) 3.2792

CL 268.08 0.30 322

G 88.473 0.43 111

E 221.84 0.39 256

� 0.25371 0.272

a Alumina platelets aspect ratio = 40:1.5 (40 mm diameter and 1–2

mm thick); �ij are dimensionless.
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The measurement falls below that of pure mullite and
well below theoretical prediction.
Elastic softening can arise from several sources:

1. voids
2. cracks
3. poor particle-interface bonding
4. enveloping soft phase around particles
5. enveloping soft phase around matrix particles.

As the softening source, voids are easiest to exclude
because the material shows near-theoretical mass den-
sity, and 11% voids are required to lower the Young
modulus by 15%. We exclude cracks for two reasons: (1)
neither SEM nor TEM revealed a significant crack den-
sity; (2) theory13 shows that the required crack density
would lower the Poisson ratio to a value much lower
than observed. We would expect excellent alumina–

mullite interfaces because the two materials are similar
in chemical composition and bonding type (ionic). As
for a soft phase enveloping the alumina platelets, we
studied this by using the solid-mechanics model descri-
bed below. Using the stiffnesses in Table 4, we found
that such a phase geometry cannot effect the observed
elastic softening.
Thus, from the above list, we are left with only possi-

bility 5: an enveloping phase surrounding the mullite
particles. We considered this possibility.
An idealized microstructure of the alumina–mullite

composite is envisioned for modeling purposes, as
shown in Fig. 5. It consists of an aggregate of mullite
grains, each surrounded by a thin silica shell represent-
ing the silica-rich grain boundaries. The volume fraction
of the mullite grains and the silica shells are denoted by
cM and cS. Embedded in this aggregate are alumina
particles with volume fraction cA. The volume fractions
of these three phases satisfy cA+cM+cS=1. The mullite
grains are assumed to be isotropic and spherical, as are
the silica shells. Consistent with the microstructure
(Fig. 1), the alumina particles are assumed to be oblate
spheroids with an aspect ratio denoted by a. They are
assumed to be aligned with the unique axis of the
spheroid coinciding with the specimen x3-axis, as shown
in Fig. 5. While aligned, the alumina particles are
assumed to be randomly oriented about the x3-axis so
that the composite exhibits transverse isotropy, with the
x1–x2 plane as the isotropic plane. We use a hexagonal-
symmetry average of the alumina monocrystal elastic
moduli; elastic moduli used in the calculations for all
three phases are given in Table 4.
To calculate the elastic moduli of the heterogeneous

microstructure shown in Fig. 5, we use a two-step aver-
aging approach. In the first step, we compute the effec-
tive moduli of a mullite polycrystal containing silica-
rich grain boundaries. In the second step, we use the
results of the first step as the matrix in a composite that
is reinforced with the aligned particles. For the first step,
we use the micromechanics model of Dunn and Led-
better.10 That model can be applied to compute the
elastic moduli of a matrix phase containing arbitrary
ellipsoid-shaped particles that are surrounded by a
coating also of arbitrary ellipsoid shape, but which may

Fig. 4. Young modulus calculated for two particle sizes. Circle near

bottom indicates measurement.

Fig. 5. Model material used for solid-mechanics calculations of effective elastic stiffnesses.
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differ from the particle shape. We apply that model by
assuming both the particles and matrix have properties
of the mullite grains, and the silica-rich shell has prop-
erties of silica, as given in Table 4. Complete details
regarding the calculation procedure are given by Dunn
and Ledbetter.10 The resulting elastic moduli of the
mullite polycrystal with silica-rich grain boundaries are
shown in Fig. 6 at an alumina volume fraction of zero.
The second step of the averaging approach consists of

estimating the moduli of a two-phase composite con-
sisting of alumina particles in the matrix of mullite with
silica-rich grain boundaries, the moduli of which were
determined in the first step. The effective elastic moduli
C of the two-phase composite can be expressed exactly
in terms of strain-concentration factors as

C ¼ c0C0A0 þ c1C1A1 ¼ C0 þ c1 C1 � C0ð ÞA1: ð3Þ

(see, for example, Hill14 and Dvorak.15) In Eq. (3), Ci

and ci denote the elastic-stiffness tensor and the volume
fraction of the ith phase, and Ai the strain-concentration

factors for the ith phase where i=0,1 denote the matrix
and particle phases, respectively. Bold symbols are used
for tensorial quantities. Physically, the strain-con-
centration factors relate the average strain in the ith
phase to the uniform srain that would be developed in a
homogeneous material if it were subjected to displace-
ment boundary conditions. In other words, Ei=AiE0

(i=0,1), where E0 is the uniform strain consistent with
the applied displacements. The second right-hand side is
obtained by using the identities c0+c1=1 and
c0A0+c1A1=I. As is apparent from Eq. (3), the key to
predicting the effective moduli of the composite is esti-
mating the concentration factors Ai.
Here we use the Mori–Tanaka mean-field theory16 to

estimate Ai. The physical interpretation of the theory is
that, when subjected to uniform-stress boundary condi-
tions, the average stress in each fiber is equal to the
average stress in a single fiber embedded in an infinite
matrix subjected to a uniform far-field stress equal to
the (as yet unknown) average stress in the composite.
Mathematically, this assumption can be written as

Fig. 6. Elastic stiffnesses Cij predicted from the solid-mechanics theory described in the text. Filled circles show measurements. Curves from top to

bottom correspond to various silica volume fractions: 0, 0.05, 0.10, 0.15, 0.20.
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Ai ¼ Adil c1Iþ c2A
dil

� ��1
; ð4Þ

Adil ¼ Iþ SC�1
0 Ci � C0ð Þ

� ��1
: ð5Þ

In Eqs. (4) and (5), Adil denotes the concentration
factor for a single particle of phase i embedded in an
infinite matrix subjected to uniform far-field stress or
strain boundary conditions; it is called the dilute con-
centration factor. It is easily determined analytically by
using Eshelby’s equivalent inclusion method (Eshelby,17

Mura18). The effect of the particle shape is contained in
the Eshelby tensor S, which is a function of the particle
shape and the Poisson ratio n of the isotropic matrix.
We carried out calculations as described above for the

alumina–mullite composites as a function of alumina
volume fraction. These results are shown in Fig. 6. For
each component of the effective moduli Cij versus alu-
mina volume fraction, five curves are shown. These
curves are calculations for various volume fractions of
silica surrounding the mullite grain boundaries, ranging
from 0.0 to 0.2. Also shown as solid circles are the

measured components of the elastic stiffnesses of two
specimens with an alumina volume fraction of 0.2.
In addition, we carried out a second set of calcula-

tions to explore the possibility that the particles, instead
of the individual grains, were surrounded by a thin silica
shell. These calculations were also done by using the
model of Dunn and Ledbetter,10 but in a slightly different
way. The calculations showed that unrealistically high
volumes of silica were required for the predictions to agree
with measurements, and, furthermore, that very different
volume fractions were required for each component of the
effective moduli. This suggests that silica-rich regions
surrounding the particles are not responsible for the
observed behavior of the elastic moduli.
Fig. 6 shows the model-calculation results together

with measurements on two composites. (Table 3 shows
results only for the softer material.) The curves repre-
sent different volume fractions of silica (0, 0.05, 0.10,
0.15, 0.20) enveloping the mullite particles. For the
softest material, about 0.15 to 0.20 volume fraction of
silica is required to effect softening. For the stiffer
material, about 0.05 to 0.10 is required. That almost the

Fig. 7. Companion to Fig. 6 covering the entire composition range. See Fig. 6 caption for curve identification.
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same silica fraction is required for all six Cij supports
the validity of the calculation and the basic hypothesis
of silica enveloping the mullite particles.
To avoid the impression that the Cij change linearly

with alumina concentration, Fig. 7 shows the entire
volume-fraction range. Except for the C13 case, all pre-
dicted curves show the usual concavity. The C13 curve is
convex because of the microstructure: platelets aligned
perpendicular to x3. TheC23 curve (not shown) is identical
to the C13 curve.
Encouraged by the solid-mechanics-calculation

results, we then looked carefully for physical evidence of
silica at mullite–mullite boundaries. Specimens for TEM
and STEM were obtained by conventional methods.
The general microstructural features were examined in
an electron microscope, and Fresnel imaging was used
to identify the presence of intergranular phase. The
chemical composition of the intergranular phase was
obtained on a VG HB5 dedicated STEM with a 1-nm
probe size and an EDS detector.
The specimen was very dense with no small amor-

phous pockets at multiple grain junctions, as shown in
Fig. 8: the Fresnel images of the mullite matrix showing
connected (or enveloped) intergranular phase. The pre-
sence of a dark fringe in the over-focus image and a
bright fringe in the under-focus image between mullite
grains indicates that there is an intergranular phase
between mullite grains. This kind of intergranular phase
was always observed whenever the grain boundaries in
the mullite matrix were tilted parallel to the electron
beam. Fig. 9 shows two EDS spectra obtained from the
mullite grain and from the intergranular phase by using
STEM with a 1-nm probe. The mullite grain has an
Al:Si ratio of about 3:2, whereas the intergranular phase
has an Al:Si ratio of about 5:7. Thus, our hypothesis
was confirmed that the presence of a silica-rich, envel-
oping, soft phase around mullite grains causes an elastic
softening of the composite. No intergranular phase was

detected in the mullite–alumina grain boundaries.
However, the small volume fraction of grain-boundary
silica must also bond poorly with the adjacent mullite
grains to explain the large elastic softening.

5. Conclusions

The measured elastic stiffnesses of alumina-platelet-
reinforced mullite-matrix composites fall far below the
expected values predicted by simple solid-mechanics-
theory calculations. Considering all the usual elastic-
softening sources, we concluded that the mullite grains
must be enveloped by a soft (probably glassy) silica

Fig. 8. Images of mullite–mullite boundaries. Dark fringe in over-focus image (left) and bright fringe in under-focus image (right) indicate an

intergranular phase.

Fig. 9. Energy-dispersive-spectroscopy spectra of mullite grain and

intergranular region showing silica-rich regions near grain boundaries.
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phase. Careful solid-mechanics-theory calculations sup-
ported this conclusion. Careful searching using TEM
and STEM methods confirmed silica-rich grain-bound-
ary regions. The small volume fraction of these silica
regions suggests that the silica–mullite bonding is much
weaker than the mullite–mullite bonding.
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